Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects

نویسندگان

  • Leandro dos Santos Coelho
  • Viviana Cocco Mariani
چکیده

Particle swarm optimization (PSO) algorithm is population-based heuristic global search algorithm inspired by social behavior patterns of organisms that live and interact within large groups. The PSO is based on researches on swarms such as fish schooling and bird flocking. Inspired by the classical PSO method and quantum mechanics theories, this work presents a quantum-inspired version of the PSO (QPSO) using the harmonic oscillator potential well (HQPSO) to solve economic dispatch problems. A 13-units test system with incremental fuel cost function that takes into account the valve-point loading effects is used to illustrate the effectiveness of the proposed HQPSO method compared with the simulation results based on the classical PSO, the QPSO, and other optimization algorithms reported in the literature. 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaotic quantum-behaved PSO Algorithm for Power System Economic Load Dispatch

The rational economic load dispatch can not only save the energy, but also improve efficiency of power systems. Therefore it is important to research economic load dispatch problem. However, The problem is a complex and nonlinear optimization problem considering valve-point loading effects of generating units; it is difficult to solve the problem using traditional optimization method. Therefore...

متن کامل

Economic Load Dispatch using PSO Algorithm Based on Adaptive Learning Strategy Considering Valve point Effect

Abstract: In recent years due to problems such as population growth and as a result increase in demand for electrical energy, power systems have been faced with new challenges that not existed in the past. One of the most important issues in modern power systems is economic load dispatch, which is a complex optimization problem with a large number of variables and constraints. Due to the comple...

متن کامل

Solving economic load dispatch problem with valve-point effects using a hybrid quantum mechanics inspired particle swarm optimisation

Economic load dispatch (ELD) performs an important part in the economic operation of power system. The ELD problem is considered as a non-linear constrained optimisation problem. The problem becomes non-convex and non-smooth when the generators’ prohibited zones and valve-point effect are considered. The purpose of this work is to present a solution strategy to solve ELD problem in an efficient...

متن کامل

Economic Dispatch of Thermal Units with Valve-point Effect using Vector Coevolving Particle Swarm Optimization Algorithm

Abstract: This paper is intended to reduce the cost of producing fuel from thermal power plants using the problem of economic distribution. This means that in order to determine the share of each unit, considering the amount of consumption and restrictions, including the ones that can be applied to the rate of increase, the prohibited operating areas and the barrier of the vapor barrier, the pr...

متن کامل

PSO-ANN For Economic Load Dispatch With Valve Point Loading Effects

This paper presents a new efficient approach to Economic Load Dispatch (ELD) problems with non-convex cost functions using PSO-ANN. The practical ELD problems have non-smooth cost functions considering valve point loading effects with equality and inequality constraints that make the problem of finding the global optimum difficult using any traditional mathematical approach. Therefore, Particle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008